Difference between revisions of "Diamond alpha Minkowski's inequality"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>Theorem:</strong> Let $\mathbb{T}$ be a [[time scale]] with $a,b \in \mathbb{T}$, $a<b$ and $p>1$. For continuous functions $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ we have
+
If $\mathbb{T}$ is a [[time scale]], $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then
 
$$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}.$$
 
$$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 15:17, 21 January 2023

Theorem

If $\mathbb{T}$ is a time scale, $a,b \in \mathbb{T}$ with $a<b$, $p>1$, and $f,g \colon [a,b]\cap \mathbb{T}\rightarrow \mathbb{R}$ are continuous, then $$\left( \displaystyle\int_a^b |(f+g)(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}\leq \left( \displaystyle\int_a^b |f(x)|^p\Diamond_{\alpha}x \right)^{\frac{1}{p}}+ \left( \displaystyle\int_a^b |g(x)|^p \Diamond_{\alpha} x \right)^{\frac{1}{p}}.$$

Proof:

</div>

References

[1]