Difference between revisions of "Unilateral Laplace transform of delta derivative"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== If $\mathbb{T}$ is a time scale, then $$\mathscr{L}_{\mathbb{T}}\{f^{\Delta}\}(z;s) = -f(s) + z\mathscr{L}\{f\}(z),$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
If $\mathbb{T}$ is a time scale, then
+
If $\mathbb{T}$ is a time scale and $f \colon \mathbb{T} \rightarrow \mathbb{C}$ is [[delta derivative|delta differentiable]], then
 
$$\mathscr{L}_{\mathbb{T}}\{f^{\Delta}\}(z;s) = -f(s) + z\mathscr{L}\{f\}(z),$$
 
$$\mathscr{L}_{\mathbb{T}}\{f^{\Delta}\}(z;s) = -f(s) + z\mathscr{L}\{f\}(z),$$
where $\mathscr{L}_{\mathbb{T}}$ denotes the [[unilateral Laplace transform]] and $f^{\Delta}$ denotes the [[delta derivative]] of $f$.
+
where $\mathscr{L}_{\mathbb{T}}$ denotes the [[unilateral Laplace transform]] and $f^{\Delta}$ denotes the delta derivative of $f$.
  
 
==Proof==
 
==Proof==
Compute using integration by parts,
 
$$\begin{array}{ll}
 
\mathscr{L}\{f^{\Delta}\}(z) &= \displaystyle\int_0^{\infty} f^{\Delta}(\tau) e_{\ominus z}(\sigma(\tau),s) \Delta \tau \\
 
&=
 
\end{array}$$
 
proving the claim. █
 
  
 
==References==
 
==References==
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
[[Category:Proven]]
+
[[Category:Unproven]]

Latest revision as of 15:11, 21 January 2023

Theorem

If $\mathbb{T}$ is a time scale and $f \colon \mathbb{T} \rightarrow \mathbb{C}$ is delta differentiable, then $$\mathscr{L}_{\mathbb{T}}\{f^{\Delta}\}(z;s) = -f(s) + z\mathscr{L}\{f\}(z),$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the unilateral Laplace transform and $f^{\Delta}$ denotes the delta derivative of $f$.

Proof

References