Difference between revisions of "Unilateral Laplace transform of delta derivative"
From timescalewiki
(Created page with "==Theorem== If $\mathbb{T}$ is a time scale, then $$\mathscr{L}_{\mathbb{T}}\{f^{\Delta}\}(z;s) = -f(s) + z\mathscr{L}\{f\}(z),$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the...") |
|||
Line 5: | Line 5: | ||
==Proof== | ==Proof== | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==References== | ==References== | ||
[[Category:Theorem]] | [[Category:Theorem]] | ||
− | [[Category: | + | [[Category:Unproven]] |
Revision as of 15:10, 21 January 2023
Theorem
If $\mathbb{T}$ is a time scale, then $$\mathscr{L}_{\mathbb{T}}\{f^{\Delta}\}(z;s) = -f(s) + z\mathscr{L}\{f\}(z),$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the unilateral Laplace transform and $f^{\Delta}$ denotes the delta derivative of $f$.