Difference between revisions of "Gaussian bell"
From timescalewiki
(Created page with "The Gaussian bell is defined<ref name=gaussbell /> ==References== <references> <ref name=gaussbell>[http://www.math.unl.edu/~apeterson1/pub/epsgauss.pdf Erbe, L.; Peterson, A...") |
(→Properties) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The Gaussian bell is defined<ref name=gaussbell /> | + | Let $\mathbb{T}$ be a [[time_scale | time scale]] with $0 \in \mathbb{T}$. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be [[regressive_function | regressive]] and defined by |
+ | $$p(t)=\ominus(t \odot 1).$$ | ||
+ | The Gaussian bell $\mathbf{E} \colon \mathbb{T} \rightarrow \mathbb{R}$ is defined<ref name=gaussbell /> to be the [[Exponential_functions | exponential function]] | ||
+ | $$\mathbf{E}(t)=e_{p}(t,0).$$ | ||
− | = | + | =Properties= |
− | < | + | <center> |
− | + | {| class="wikitable" | |
− | + | |+Time Scale Gaussian Bells | |
+ | |- | ||
+ | |$\mathbb{T}$ | ||
+ | |$\mathbf{E}(t)$ | ||
+ | |- | ||
+ | |[[Real_numbers | $\mathbb{R}$]] | ||
+ | |$e^{-\frac{t^2}{2}}$ | ||
+ | |- | ||
+ | |[[Integers | $\mathbb{Z}$]] | ||
+ | |$2^{\frac{-t(t-1)}{2}}$ | ||
+ | |- | ||
+ | |[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
+ | | $\left[(1+h)^{\frac{1}{h}} \right]^{\frac{-t(t-h)}{2}}$ | ||
+ | |- | ||
+ | | [[Square_integers | $\mathbb{Z}^2$]] | ||
+ | | | ||
+ | |- | ||
+ | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | ||
+ | | | ||
+ | |- | ||
+ | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | ||
+ | | $\displaystyle\prod_{k=\log_q(t)+1}^{\infty} \dfrac{1}{\left(1+(\frac{1}{q}-1)q^k \right)^{q^k}}$ | ||
+ | |- | ||
+ | |[[Harmonic_numbers | $\mathbb{H}$]] | ||
+ | |$\displaystyle\prod_{k=1}^n \left( \dfrac{k}{k+1} \right)^{H_{k-1}}$ | ||
+ | |} | ||
+ | </center> | ||
+ | |||
+ | =References= | ||
+ | * {{PaperReference|Square Integrability of Gaussian Bells on Time Scales|2005|Lynn Erbe|author2=Allan Peterson|author3=Moritz Simon|prev=findme|next=findme}}: Definition $2.30$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 15:03, 21 January 2023
Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be regressive and defined by $$p(t)=\ominus(t \odot 1).$$ The Gaussian bell $\mathbf{E} \colon \mathbb{T} \rightarrow \mathbb{R}$ is defined<ref name=gaussbell /> to be the exponential function $$\mathbf{E}(t)=e_{p}(t,0).$$
Properties
$\mathbb{T}$ | $\mathbf{E}(t)$ |
$\mathbb{R}$ | $e^{-\frac{t^2}{2}}$ |
$\mathbb{Z}$ | $2^{\frac{-t(t-1)}{2}}$ |
$h\mathbb{Z}$ | $\left[(1+h)^{\frac{1}{h}} \right]^{\frac{-t(t-h)}{2}}$ |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $\displaystyle\prod_{k=\log_q(t)+1}^{\infty} \dfrac{1}{\left(1+(\frac{1}{q}-1)q^k \right)^{q^k}}$ |
$\mathbb{H}$ | $\displaystyle\prod_{k=1}^n \left( \dfrac{k}{k+1} \right)^{H_{k-1}}$ |
References
- Lynn Erbe, Allan Peterson and Moritz Simon: Square Integrability of Gaussian Bells on Time Scales (2005)... (previous)... (next): Definition $2.30$