Difference between revisions of "Shifting problem"
From timescalewiki
(→Examples) |
(→Examples) |
||
Line 16: | Line 16: | ||
|- | |- | ||
| $\mathbb{T}$ | | $\mathbb{T}$ | ||
− | | $\hat{f}(t,s)$ | + | | $\hat{f}(t,s)=$ |
|- | |- | ||
|[[Real_numbers | $\mathbb{R}$]] | |[[Real_numbers | $\mathbb{R}$]] | ||
− | |$ | + | |$f(t-s)$ |
|- | |- | ||
|[[Integers | $\mathbb{Z}$]] | |[[Integers | $\mathbb{Z}$]] | ||
− | |$ | + | |$f(t-s+t_0)$ |
|- | |- | ||
|[[Multiples_of_integers | $h\mathbb{Z}$]] | |[[Multiples_of_integers | $h\mathbb{Z}$]] |
Revision as of 14:40, 21 January 2023
Let $\mathbb{T}$ be a time scale, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following partial dynamic equation for $t,s \in \mathbb{T}$: $$\left\{ \begin{array}{ll} \dfrac{\partial \hat{f}}{\Delta t}(t,\sigma(s))=-\dfrac{\partial \hat{f}}{\Delta s}(t,s)& ; t \geq s \geq t_0, \\ \hat{f}(t,t_0)=f(t)&; t \geq t_0. \end{array} \right.$$ The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).
Properties
Delta integral of certain shift of f is delta integral of f
Delta partial derivative of shift along diagonal
Examples
$\mathbb{T}$ | $\hat{f}(t,s)=$ |
$\mathbb{R}$ | $f(t-s)$ |
$\mathbb{Z}$ | $f(t-s+t_0)$ |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |