Difference between revisions of "Gamma function diverges at infinity"
From timescalewiki
(Created page with "==Theorem== If $\mathbb{T}$ is a time scale and $s \in \mathbb{T}^+$, then $$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty.$$ ==Proof== ==R...") |
|||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
If $\mathbb{T}$ is a [[time scale]] and $s \in \mathbb{T}^+$, then | If $\mathbb{T}$ is a [[time scale]] and $s \in \mathbb{T}^+$, then | ||
− | $$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty | + | $$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty,$$ |
+ | where $\Gamma_{\mathbb{T}}$ denotes the [[gamma function]]. | ||
==Proof== | ==Proof== |
Latest revision as of 17:56, 15 January 2023
Theorem
If $\mathbb{T}$ is a time scale and $s \in \mathbb{T}^+$, then $$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty,$$ where $\Gamma_{\mathbb{T}}$ denotes the gamma function.