Difference between revisions of "Gamma function diverges at infinity"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== If $\mathbb{T}$ is a time scale and $s \in \mathbb{T}^+$, then $$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty.$$ ==Proof== ==R...")
 
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
If $\mathbb{T}$ is a [[time scale]] and $s \in \mathbb{T}^+$, then  
 
If $\mathbb{T}$ is a [[time scale]] and $s \in \mathbb{T}^+$, then  
$$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty.$$
+
$$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty,$$
 +
where $\Gamma_{\mathbb{T}}$ denotes the [[gamma function]].
  
 
==Proof==
 
==Proof==

Latest revision as of 17:56, 15 January 2023

Theorem

If $\mathbb{T}$ is a time scale and $s \in \mathbb{T}^+$, then $$\displaystyle\lim_{x \rightarrow \infty} \Gamma_{\mathbb{T}}(x;s) = \infty,$$ where $\Gamma_{\mathbb{T}}$ denotes the gamma function.

Proof

References