Difference between revisions of "Delta Taylor's formula"
From timescalewiki
m (Tom moved page Taylor's formula to Delta Taylor's formula) |
|||
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a [[time scale]] | + | ==Theorem== |
− | + | Let $\mathbb{T}$ be a [[time scale]] and $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then | |
− | |||
− | |||
$$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ | $$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ | ||
where $h_k$ denotes the [[Polynomials | $h_k$ polynomials]]. | where $h_k$ denotes the [[Polynomials | $h_k$ polynomials]]. | ||
− | + | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
+ | ==References== | ||
+ | *{{PaperReference|Analysis of the bilateral Laplace transform on time scales with applications|2021|Tom Cuchta|author2=Svetlin Georgiev|prev=|next=}}: Theorem 11 | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 17:04, 15 January 2023
Theorem
Let $\mathbb{T}$ be a time scale and $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then $$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ where $h_k$ denotes the $h_k$ polynomials.