Difference between revisions of "Delta Taylor's formula"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]].
+
==Theorem==
 
+
Let $\mathbb{T}$ be a [[time scale]] and $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> Let $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then
 
 
$$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$
 
$$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$
 
where $h_k$ denotes the [[Polynomials | $h_k$ polynomials]].
 
where $h_k$ denotes the [[Polynomials | $h_k$ polynomials]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
 
</div>
+
==Proof==
</div>
+
 
 +
==References==
 +
*{{PaperReference|Analysis of the bilateral Laplace transform on time scales with applications|2021|Tom Cuchta|author2=Svetlin Georgiev|prev=|next=}}: Theorem 11
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 17:04, 15 January 2023

Theorem

Let $\mathbb{T}$ be a time scale and $n \in \{1,2,\ldots\}$. Suppose $f$ is $n$-times differentiable on $\mathbb{T}^{\kappa^n}$. Let $\alpha \in \mathbb{T}^{\kappa^{n-1}}, t\in\mathbb{T}$ then $$f(t)=\displaystyle\sum_{k=0}^{n-1} h_k(t,\alpha) f^{\Delta^k}(\alpha) + \displaystyle\int_{\alpha}^{\rho^{n-1}(t)} h_{n-1}(t,\sigma(\tau)) f^{\Delta^n}(\tau) \Delta \tau,$$ where $h_k$ denotes the $h_k$ polynomials.


Proof

References