Difference between revisions of "Marks-Gravagne-Davis Fourier transform"
From timescalewiki
(→Examples) |
|||
Line 9: | Line 9: | ||
<center> | <center> | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+Time Scale | + | |+Time Scale foo Functions |
|- | |- | ||
− | |$\mathbb{T} | + | |$\mathbb{T}$ |
− | | | + | | |
|- | |- | ||
|[[Real_numbers | $\mathbb{R}$]] | |[[Real_numbers | $\mathbb{R}$]] | ||
− | |$ | + | |$foo(t)= $ |
|- | |- | ||
|[[Integers | $\mathbb{Z}$]] | |[[Integers | $\mathbb{Z}$]] | ||
− | |$ | + | |$foo(t) = $ |
|- | |- | ||
+ | |[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | | [[Square_integers | $\mathbb{Z}^2$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | ||
+ | | $foo(t) =$ | ||
+ | |- | ||
+ | |[[Harmonic_numbers | $\mathbb{H}$]] | ||
+ | |$foo(t) = $ | ||
+ | |}</pre> | ||
+ | generates | ||
+ | {| class="wikitable" | ||
+ | |+Time Scale foo Functions | ||
+ | |- | ||
+ | |$\mathbb{T}$ | ||
+ | | | ||
+ | |- | ||
+ | |[[Real_numbers | $\mathbb{R}$]] | ||
+ | |$foo(t)= $ | ||
+ | |- | ||
+ | |[[Integers | $\mathbb{Z}$]] | ||
+ | |$foo(t) = $ | ||
+ | |- | ||
+ | |[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | | [[Square_integers | $\mathbb{Z}^2$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | ||
+ | | $foo(t) =$ | ||
+ | |- | ||
+ | |[[Harmonic_numbers | $\mathbb{H}$]] | ||
+ | |$foo(t) = $ | ||
|} | |} | ||
</center> | </center> |
Revision as of 16:13, 15 January 2023
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.
Contents
Properties
Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel
Examples
$\mathbb{T}$ | |
$\mathbb{R}$ | $foo(t)= $ |
$\mathbb{Z}$ | $foo(t) = $ |
$h\mathbb{Z}$ | $foo(t) = $ |
$\mathbb{Z}^2$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $foo(t) =$ |
$\mathbb{H}$ | $foo(t) = $ |
generates
$\mathbb{T}$ | |
$\mathbb{R}$ | $foo(t)= $ |
$\mathbb{Z}$ | $foo(t) = $ |
$h\mathbb{Z}$ | $foo(t) = $ |
$\mathbb{Z}^2$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $foo(t) =$ |
$\mathbb{H}$ | $foo(t) = $ |
See also
Cuchta-Georgiev Fourier transform