Difference between revisions of "Marks-Gravagne-Davis Fourier transform"

From timescalewiki
Jump to: navigation, search
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
[[Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel]]
 
[[Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel]]
 +
 +
=Examples=
 +
*The [[Gaussian_bell | Gaussian bell]]
 +
{| class="wikitable"
 +
|+Time Scale $\Delta$-exponential Functions
 +
|-
 +
|$\mathbb{T}=$
 +
|$e_p(t,s)=$
 +
|-
 +
|[[Real_numbers | $\mathbb{R}$]]
 +
|$\mathcal{F}\{f\}(z;s)=$
 +
|-
 +
|[[Integers | $\mathbb{Z}$]]
 +
|$\mathcal{F}\{f\}(z;s)=$
 +
|-
 +
|}
 +
  
 
=See also=
 
=See also=

Revision as of 16:12, 15 January 2023

Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.

Properties

Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel

Examples

Time Scale $\Delta$-exponential Functions
$\mathbb{T}=$ $e_p(t,s)=$
$\mathbb{R}$ $\mathcal{F}\{f\}(z;s)=$
$\mathbb{Z}$ $\mathcal{F}\{f\}(z;s)=$


See also

Cuchta-Georgiev Fourier transform

References