Difference between revisions of "Marks-Gravagne-Davis Fourier transform"
From timescalewiki
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
− | [[ | + | [[Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel]] |
=See also= | =See also= |
Revision as of 16:04, 15 January 2023
Let $\mathbb{T}$ be a time scale and let $s \in \mathbb{T}$. Let $f \colon \mathbb{T} \rightarrow \mathbb{C}$ be a function. Define the Fourier transform of $f$ centered at $s$ by $$\mathscr{F}\{f\}(z;s)=\displaystyle\int_{\mathbb{T}} f(\tau)e_{\ominus \mathring{\iota} 2 \pi z}(\tau,s) \Delta \tau,$$ where $\ominus$ denotes the circle minus operation, $e_{\ominus \mathring{\iota}2 \pi z}$ denotes the delta exponential, and $\mathring{\iota}$ denotes the Hilger pure imaginary.
Properties
Marks-Gravagne-Davis Fourier transform as a delta integral with classical exponential kernel
See also
Cuchta-Georgiev Fourier transform