Difference between revisions of "Hilger imaginary part"

From timescalewiki
Jump to: navigation, search
Line 4: Line 4:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Range of Hilger imaginary part]]<br />
<strong>Theorem:</strong> The following inequality holds for $z \in \mathbb{C}_h$:
 
$$-\dfrac{\pi}{h} < \mathrm{Im}_h(z) \leq \dfrac{\pi}{h}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
 
[[Limit of Hilger real and imag parts yields classical]]<br />
 
[[Limit of Hilger real and imag parts yields classical]]<br />
 
[[Hilger real part oplus Hilger imaginary part equals z]]<br />
 
[[Hilger real part oplus Hilger imaginary part equals z]]<br />

Revision as of 15:03, 15 January 2023

Let $h>0$ and let $z \in \mathbb{C}_h$, the Hilger complex plane. The Hilger imaginary part of $z$ is defined by $$\mathrm{Im}_h(z)=\dfrac{\mathrm{Arg}(zh+1)}{h},$$ where $\mathrm{Arg}$ denotes the principal argument of $z$ (i.e. $-\pi < \mathrm{Arg(z)} \leq \pi$).

Properties

Range of Hilger imaginary part
Limit of Hilger real and imag parts yields classical
Hilger real part oplus Hilger imaginary part equals z