Difference between revisions of "Backward jump"
From timescalewiki
(Created page with "Let $\mathbb{T}$ be a time scale. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\rho(t) = \sup \left\{s \...") |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Let $\mathbb{T}$ be a [[time scale]]. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula | Let $\mathbb{T}$ be a [[time scale]]. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula | ||
$$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$ | $$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$ | ||
+ | |||
+ | =References= | ||
+ | * {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Forward jump|next=Right scattered}}: Appendix | ||
+ | * {{PaperReference|Functional series on time scales|2008|Dorota Mozyrska|author2=Ewa Pawluszewicz|prev=Forward jump|next=Forward graininess}} |
Latest revision as of 14:59, 15 January 2023
Let $\mathbb{T}$ be a time scale. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$