Difference between revisions of "Backward jump"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\rho(t) = \sup \left\{s \...")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula
 
Let $\mathbb{T}$ be a [[time scale]]. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula
 
$$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$
 
$$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$
 +
 +
=References=
 +
* {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Forward jump|next=Right scattered}}: Appendix
 +
* {{PaperReference|Functional series on time scales|2008|Dorota Mozyrska|author2=Ewa Pawluszewicz|prev=Forward jump|next=Forward graininess}}

Latest revision as of 14:59, 15 January 2023

Let $\mathbb{T}$ be a time scale. The backward jump operator $\rho \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\rho(t) = \sup \left\{s \in \mathbb{T} \colon s <t \right\}.$$

References