Difference between revisions of "Mozyrska-Torres logarithm tends to infinity"
From timescalewiki
(Created page with "==Theorem== Let $\mathb{T}$ be a time scale. The following formula holds: $$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$ where $L_{\mathbb{T}}$...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Theorem== | ==Theorem== | ||
− | Let $\ | + | Let $\mathbb{T}$ be a [[time scale]]. The following formula holds: |
$$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$ | $$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$ | ||
where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]]. | where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]]. | ||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | + | *{{PaperReference|Oscillation of second order delay dynamic equations|2005|Ravi P. Agarwal|prev=findme|next=findme}}: Lemma 2.2 | |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 19:07, 11 December 2017
Theorem
Let $\mathbb{T}$ be a time scale. The following formula holds: $$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.