Difference between revisions of "Mozyrska-Torres logarithm tends to infinity"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathb{T}$ be a time scale. The following formula holds: $$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$ where $L_{\mathbb{T}}$...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathb{T}$ be a [[time scale]]. The following formula holds:  
+
Let $\mathbb{T}$ be a [[time scale]]. The following formula holds:  
 
$$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$
 
$$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$
 
where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]].
 
where $L_{\mathbb{T}}$ denotes the [[Mozyrska-Torres logarithm]].
Line 7: Line 7:
  
 
==References==
 
==References==
 
+
*{{PaperReference|Oscillation of second order delay dynamic equations|2005|Ravi P. Agarwal|prev=findme|next=findme}}: Lemma 2.2
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 19:07, 11 December 2017

Theorem

Let $\mathbb{T}$ be a time scale. The following formula holds: $$\displaystyle\lim_{t \rightarrow \infty} L_{\mathbb{T}}(t) = \infty,$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

Proof

References