Difference between revisions of "Cylinder transformation"

From timescalewiki
Jump to: navigation, search
 
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]]. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the [[Hilger complex plane]] and $\mathbb{Z}_h=\left\{ z \in \mathbb{C} \colon -\dfrac{\pi}{h} < \mathrm{Im}(z) \leq \dfrac{\pi}{h} \right\}$, and is defined by the formula
+
Let $\mathbb{T}$ be a [[time scale]]. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the [[Hilger complex plane]] and $\mathbb{Z}_h$ denotes the [[cylinder strip]], and is defined by the formula
 
$$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$
 
$$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$
 
where $\mathrm{Log}$ denotes the principal logarithm.
 
where $\mathrm{Log}$ denotes the principal logarithm.
Line 5: Line 5:
 
=See also=
 
=See also=
 
[[Delta exponential]]<br />
 
[[Delta exponential]]<br />
 +
 +
=References=
 +
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Cylinder strip|next=Inverse cylinder transformation}}: Definition $2.3$
  
 
[[Category:Definition]]
 
[[Category:Definition]]

Latest revision as of 00:52, 30 May 2017

Let $\mathbb{T}$ be a time scale. We define the cylinder transformation $\xi_h \colon \mathbb{C}_h \rightarrow \mathbb{Z}_h$, where $\mathbb{C}_h$ denotes the Hilger complex plane and $\mathbb{Z}_h$ denotes the cylinder strip, and is defined by the formula $$\xi_h(z)=\dfrac{1}{h} \mathrm{Log}(1+zh),$$ where $\mathrm{Log}$ denotes the principal logarithm.

See also

Delta exponential

References