Difference between revisions of "Hilger circle"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\math...")
 
Line 2: Line 2:
 
$$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$
 
$$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$
 
where $\mathbb{C}_h$ denotes the [[Hilger complex plane]].
 
where $\mathbb{C}_h$ denotes the [[Hilger complex plane]].
 +
 +
=Properties=
 +
 +
=References=
 +
*{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger alternating axis|next=findme}}: Definition $2.2$

Revision as of 00:42, 30 May 2017

Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ denotes the Hilger complex plane.

Properties

References