Difference between revisions of "Hilger circle"
From timescalewiki
(Created page with "Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\math...") |
|||
Line 2: | Line 2: | ||
$$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ | $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ | ||
where $\mathbb{C}_h$ denotes the [[Hilger complex plane]]. | where $\mathbb{C}_h$ denotes the [[Hilger complex plane]]. | ||
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
+ | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger alternating axis|next=findme}}: Definition $2.2$ |
Revision as of 00:42, 30 May 2017
Let $h>0$. The Hilger imaginary circle is defined by $$\mathbb{I}_h = \left\{ z \in \mathbb{C}_h \colon \left| z + \dfrac{1}{h} \right| = \dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ denotes the Hilger complex plane.
Properties
References
- Robert J. Marks II, Ian A. Gravagne and John M. Davis: A generalized Fourier transform and convolution on time scales (2008)... (previous)... (next): Definition $2.2$