Difference between revisions of "Bohner logarithm"

From timescalewiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 11: Line 11:
  
 
=References=
 
=References=
{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3)
+
*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Euler-Cauchy logarithm}}: $(3)$

Latest revision as of 17:02, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $p \colon \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$

Properties

Bohner logarithm sub a product

See also

Euler-Cauchy logarithm
Jackson logarithm
Mozyrska-Torres logarithm

References