Difference between revisions of "Bohner logarithm"

From timescalewiki
Jump to: navigation, search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]] and let $p \mathbb{T} \rightarrow \mathbb{C}$ [[delta derivative|delta differentiable]]. The Bohner logarithm is defined by
+
Let $\mathbb{T}$ be a [[time scale]] and let $p \colon \mathbb{T} \rightarrow \mathbb{C}$ [[delta derivative|delta differentiable]]. The Bohner logarithm is defined by
 
$$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
 
$$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
  
 
=Properties=
 
=Properties=
 
[[Bohner logarithm sub a product]]<br />
 
[[Bohner logarithm sub a product]]<br />
 +
 +
=See also=
 +
[[Euler-Cauchy logarithm]]<br />
 +
[[Jackson logarithm]]<br />
 +
[[Mozyrska-Torres logarithm]]<br />
  
 
=References=
 
=References=
{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3)
+
*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Euler-Cauchy logarithm}}: $(3)$

Latest revision as of 17:02, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $p \colon \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$

Properties

Bohner logarithm sub a product

See also

Euler-Cauchy logarithm
Jackson logarithm
Mozyrska-Torres logarithm

References