Difference between revisions of "Delta exponential dynamic equation"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$. The following dynamic equation holds: $$y^{\Delta}(t)=p(t)y(t), \quad...")
 
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
==Theorem==
+
Let $\mathbb{T}$ be a [[time scale]] and let $p \in$ [[Forward regressive function|$\mathcal{R}$]]$(\mathbb{T},\mathbb{C})$. The following [[dynamic equation]] is called the exponential dynamic equation:
Let $\mathbb{T}$ be a [[time scale]] and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$. The following [[dynamic equation]] holds:
+
$$y^{\Delta}(t)=p(t)y(t).$$
$$y^{\Delta}(t)=p(t)y(t), \quad y(s)=1$$
+
 
is called the exponential dynamic equation. Its solution is the [[delta exponential]].
+
=Properties=
 +
 
 +
=See also=
 +
[[Delta exponential]]<br />
  
 
=References=
 
=References=
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$
+
*{{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$
 +
*{{PaperReference|The logarithm on time scales|2005|Martin Bohner|next=Euler-Cauchy logarithm}}: $(1)$
 +
 
 +
[[Category:Definition]]

Latest revision as of 17:02, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $p \in$ $\mathcal{R}$$(\mathbb{T},\mathbb{C})$. The following dynamic equation is called the exponential dynamic equation: $$y^{\Delta}(t)=p(t)y(t).$$

Properties

See also

Delta exponential

References