Difference between revisions of "Delta exponential dynamic equation"
From timescalewiki
Line 8: | Line 8: | ||
=References= | =References= | ||
− | + | {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$ | |
{{PaperReference|The logarithm on time scales|2005|Martin Bohner|next=Euler-Cauchy logarithm}}: $(1)$ | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|next=Euler-Cauchy logarithm}}: $(1)$ | ||
[[Category:Definition]] | [[Category:Definition]] |
Revision as of 17:02, 11 February 2017
Let $\mathbb{T}$ be a time scale and let $p \in$ $\mathcal{R}$$(\mathbb{T},\mathbb{C})$. The following dynamic equation is called the exponential dynamic equation: $$y^{\Delta}(t)=p(t)y(t).$$
Properties
See also
References
Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (previous)... (next): $(2.17)$ Martin Bohner: The logarithm on time scales (2005)... (next): $(1)$