Difference between revisions of "Delta exponential dynamic equation"

From timescalewiki
Jump to: navigation, search
Line 9: Line 9:
 
=References=
 
=References=
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Semigroup property of delta exponential|next=findme}}: $(2.17)$
{{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=Delta exponential dynamic equation|next=Bohner logarithm}}: $(1)$
+
{{PaperReference|The logarithm on time scales|2005|Martin Bohner|next=Euler-Cauchy logarithm}}: $(1)$
  
 
[[Category:Definition]]
 
[[Category:Definition]]

Revision as of 17:00, 11 February 2017

Let $\mathbb{T}$ be a time scale and let $p \in$ $\mathcal{R}$$(\mathbb{T},\mathbb{C})$. The following dynamic equation is called the exponential dynamic equation: $$y^{\Delta}(t)=p(t)y(t).$$

Properties

See also

Delta exponential

References

Martin Bohner: The logarithm on time scales (2005)... (next): $(1)$