Difference between revisions of "Bohner logarithm"
From timescalewiki
Line 1: | Line 1: | ||
− | + | Let $\mathbb{T}$ be a [[time scale]] and let $p \mathbb{T} \rightarrow \mathbb{C}$ [[delta derivative|delta differentiable]]. The Bohner logarithm is defined by | |
− | $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau$$ | + | $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$ |
− | + | =Properties= | |
− | + | [[Bohner logarithm sub a product]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
=References= | =References= | ||
− | + | {{PaperReference|The logarithm on time scales|2005|Martin Bohner|prev=findme|next=findme}}: (3) |
Revision as of 22:49, 10 February 2017
Let $\mathbb{T}$ be a time scale and let $p \mathbb{T} \rightarrow \mathbb{C}$ delta differentiable. The Bohner logarithm is defined by $$L_p(t,t_0) = \displaystyle\int_{t_0}^t \dfrac{p^{\Delta}(\tau)}{p(\tau)} \Delta \tau.$$
Properties
Bohner logarithm sub a product
References
Martin Bohner: The logarithm on time scales (2005)... (previous)... (next): (3)