Difference between revisions of "Timescalecalculus python library documentation"
(→Defining a time scale) |
|||
Line 10: | Line 10: | ||
Let $\mathbb{T}=\left\{0,\dfrac{1}{3},\dfrac{1}{2},\dfrac{7}{9},1,2,3,4,5,6,7 \right\}$.<br /> | Let $\mathbb{T}=\left\{0,\dfrac{1}{3},\dfrac{1}{2},\dfrac{7}{9},1,2,3,4,5,6,7 \right\}$.<br /> | ||
<pre>>>> ts=[0,Fraction(1,3),Fraction(1,2),Fraction(7,9),1,2,3,4,5,6,7]</pre> | <pre>>>> ts=[0,Fraction(1,3),Fraction(1,2),Fraction(7,9),1,2,3,4,5,6,7]</pre> | ||
− | The [[forward jump]] $\sigma$ can be | + | The [[forward jump]] $\sigma$ can be computed:<br /> |
$\sigma(0)=\dfrac{1}{3}$ | $\sigma(0)=\dfrac{1}{3}$ | ||
<pre>>>> sigma(0,ts) | <pre>>>> sigma(0,ts) | ||
Line 20: | Line 20: | ||
<pre>>>> sigma(7,ts) | <pre>>>> sigma(7,ts) | ||
7</pre> | 7</pre> | ||
+ | The [[forward graininess]] $\mu$ can be computed:<br /> | ||
+ | $\mu \left( \dfrac{1}{3} \right)=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}$ | ||
+ | <pre>>>> mu(Fraction(1,3),ts) | ||
+ | Fraction(1, 6)</pre> | ||
The [[backward jump]] $\rho$ can be used:<br /> | The [[backward jump]] $\rho$ can be used:<br /> | ||
Line 31: | Line 35: | ||
<pre>>>> rho(0,ts) | <pre>>>> rho(0,ts) | ||
0</pre> | 0</pre> | ||
+ | |||
+ | The [[backward graininess]] $\nu$ can be computed:<br /> | ||
+ | $\nu\left( \dfrac{7}{9} \right)=\dfrac{7}{9}-\dfrac{1}{2}=\dfrac{5}{18}$ | ||
+ | <pre>>>> nu(Fraction(7,9),ts) | ||
+ | Fraction(5, 18)</pre> | ||
+ | |||
+ | ==Delta-derivative== | ||
The [[delta derivative]] works as expected. The delta derivative of a constant is zero: | The [[delta derivative]] works as expected. The delta derivative of a constant is zero: | ||
<pre>>>> dderivative(lambda x: 1,5,ts) | <pre>>>> dderivative(lambda x: 1,5,ts) |
Revision as of 06:37, 23 December 2016
This is the documentation for the Python repository timescalecalculus.
The basics
After extracting the files, open a Python instance in its folder and type
>>> from timescalecalculus import *
Time scale basics
Right now, a time scale in this library can consist of only a finite list of numbers. Fraction types are available.
Let $\mathbb{T}=\left\{0,\dfrac{1}{3},\dfrac{1}{2},\dfrac{7}{9},1,2,3,4,5,6,7 \right\}$.
>>> ts=[0,Fraction(1,3),Fraction(1,2),Fraction(7,9),1,2,3,4,5,6,7]
The forward jump $\sigma$ can be computed:
$\sigma(0)=\dfrac{1}{3}$
>>> sigma(0,ts) Fraction(1, 3)
$\sigma(4)=5$
>>> sigma(4,ts) 5
$\sigma(7)=7$
>>> sigma(7,ts) 7
The forward graininess $\mu$ can be computed:
$\mu \left( \dfrac{1}{3} \right)=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}$
>>> mu(Fraction(1,3),ts) Fraction(1, 6)
The backward jump $\rho$ can be used:
$\rho(1)=\dfrac{7}{9}$
>>> rho(1,ts) Fraction(7, 9)
$\rho(3)=2$
>>> rho(3,ts) 2
$\rho(0)=0$
>>> rho(0,ts) 0
The backward graininess $\nu$ can be computed:
$\nu\left( \dfrac{7}{9} \right)=\dfrac{7}{9}-\dfrac{1}{2}=\dfrac{5}{18}$
>>> nu(Fraction(7,9),ts) Fraction(5, 18)
Delta-derivative
The delta derivative works as expected. The delta derivative of a constant is zero:
>>> dderivative(lambda x: 1,5,ts) 0
and obeying the delta derivative of squaring function, we see
>>> dderivative(lambda x: x*x,5,ts) 11
The delta exponential is supported. For example if $\mathbb{T}=\{1,2,3,4,5,6,7\}$ then $e_1(3,1)=(1+\mu(1))(1+\mu(2))=(2)(2)=4$ which is correctly computed:
>>> dexpf(lambda x: 1, 3, 1, ts) 4