Difference between revisions of "Nabla cosh"
From timescalewiki
Line 2: | Line 2: | ||
=Properties= | =Properties= | ||
− | + | [[Second order dynamic equation for nabla cosh]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
#$\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function. | #$\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function. |
Revision as of 23:35, 11 December 2016
$$\widehat{\cosh}_p(t,s)=\dfrac{\widehat{e}_p(t,s)+\widehat{e}_{-p}(t,s)}{2}$$
Properties
Second order dynamic equation for nabla cosh
- $\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the $\nabla$-$\sinh$ function.
- $\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\widehat{e}_{\nu p^2}(t,s)$
- $\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
- $\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$