Difference between revisions of "Delta derivative of reciprocal of classical polynomial"
From timescalewiki
Line 6: | Line 6: | ||
==References== | ==References== | ||
− | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative of classical polynomial|next=findme}}: Theorem 1.24(ii) | + | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative of classical polynomial|next=findme}}: Theorem $1.24(ii)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 12:48, 23 September 2016
Theorem
Let $\mathbb{T}$ be a time scale, let $\alpha$ a constant, let $m \in \mathbb{N}$, and define $g\colon \mathbb{T} \rightarrow \mathbb{R}$ by $g(t)=\dfrac{1}{(t-\alpha)^m}$. Then $$g^{\Delta}(t)=-\displaystyle\sum_{j=0}^{m-1} \dfrac{1}{(\sigma(t)-\alpha)^{m-j}(t-\alpha)^{j+1}},$$ where $\sigma$ denotes the forward jump.
Proof
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (previous)... (next): Theorem $1.24(ii)$