Difference between revisions of "Gaussian bell"

From timescalewiki
Jump to: navigation, search
(Created page with "The Gaussian bell is defined<ref name=gaussbell /> ==References== <references> <ref name=gaussbell>[http://www.math.unl.edu/~apeterson1/pub/epsgauss.pdf Erbe, L.; Peterson, A...")
 
Line 1: Line 1:
The Gaussian bell is defined<ref name=gaussbell />
+
Let $\mathbb{T}$ be a [[time_scale | time scale]] with $0 \in \mathbb{T}$. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be [[regressive_function | regressive]] and defined by
 +
$$p(t)=\ominus(t \odot 1).$$
 +
The Gaussian bell $\mathbf{E} \colon \mathbb{T} \rightarrow \mathbb{R}$ is defined<ref name=gaussbell /> to be the [[exponential_function | exponential function]]
 +
$$\mathbf{E}(t)=e_{p}(t,0).$$
  
 
==References==
 
==References==

Revision as of 02:24, 26 May 2014

Let $\mathbb{T}$ be a time scale with $0 \in \mathbb{T}$. Let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be regressive and defined by $$p(t)=\ominus(t \odot 1).$$ The Gaussian bell $\mathbf{E} \colon \mathbb{T} \rightarrow \mathbb{R}$ is defined<ref name=gaussbell /> to be the exponential function $$\mathbf{E}(t)=e_{p}(t,0).$$

References

<references> <ref name=gaussbell>Erbe, L.; Peterson, A.;Simon, M. Square integrability of Gaussian bells on time scales. Comput. Math. Appl. 49 (2005), no. 5-6, 871--883. </ref> </references>