Difference between revisions of "Nabla derivative"
(→References) |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
Let $\mathbb{T}$ be a [[time scale]]. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by | Let $\mathbb{T}$ be a [[time scale]]. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by | ||
$$\nu(t) = t - \rho(t).$$ | $$\nu(t) = t - \rho(t).$$ | ||
Line 4: | Line 5: | ||
Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$, | Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$, | ||
$$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$ | $$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$ | ||
+ | |||
+ | ==Properties of the $\nabla$-derivative== | ||
+ | [[Nabla differentiable implies continuous]]<br /> | ||
+ | [[Nabla derivative at left-scattered]]<br /> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> If $t$ is left-dense, then (if it exists), | ||
+ | $$f^{\nabla}(t) = \lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem:</strong> If $f$ is differentiable at $t$, then | ||
+ | $$f(\rho(t))=f(t)+\nu(t)f^{\nabla}(t).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem (Sum rule):</strong> | ||
+ | $$(f+g)^{\nabla}(t)=f^{\nabla}(t)+g^{\nabla}(t).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem (Constant rule):</strong> If $\alpha$ is constant with respect to $t$, then | ||
+ | $$(\alpha f)^{\nabla}(t) = \alpha f^{\nabla}(t).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem (Product rule,I):</strong> The following formula holds: | ||
+ | $$(fg)^{\nabla}(t)=f^{\nabla}(t)g(t)+f(\rho(t))g^{\nabla}(t)).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem (Product rule,II):</strong> The following formula holds: | ||
+ | $$(fg)^{\nabla}(t) = f(t)g^{\nabla}(t)+ f^{\nabla}(t)g(\rho(t)).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
+ | <strong>Theorem (Quotient rule):</strong> The following formula holds: | ||
+ | $$\left( \dfrac{f}{g} \right)^{\nabla}(t) = \dfrac{f^{\nabla}(t)g(t)-f(t)g^{\nabla}(t)}{g(t)g(\rho(t))}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | [[Relationship between nabla derivative and delta derivative]]<br /> | ||
+ | [[Relationship between delta derivative and nabla derivative]]<br /> | ||
+ | |||
+ | =See also= | ||
+ | [[Delta derivative]]<br /> | ||
=References= | =References= | ||
[http://wwwp.cord.edu/faculty/andersod/p20.pdf Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran] | [http://wwwp.cord.edu/faculty/andersod/p20.pdf Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran] | ||
+ | |||
+ | [[Category:Definition]] |
Latest revision as of 01:01, 23 August 2016
Let $\mathbb{T}$ be a time scale. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by $$\nu(t) = t - \rho(t).$$
Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$, $$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$
Properties of the $\nabla$-derivative
Nabla differentiable implies continuous
Nabla derivative at left-scattered
Theorem: If $t$ is left-dense, then (if it exists), $$f^{\nabla}(t) = \lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$
Proof: █
Theorem: If $f$ is differentiable at $t$, then $$f(\rho(t))=f(t)+\nu(t)f^{\nabla}(t).$$
Proof: █
Theorem (Sum rule): $$(f+g)^{\nabla}(t)=f^{\nabla}(t)+g^{\nabla}(t).$$
Proof: █
Theorem (Constant rule): If $\alpha$ is constant with respect to $t$, then $$(\alpha f)^{\nabla}(t) = \alpha f^{\nabla}(t).$$
Proof: █
Theorem (Product rule,I): The following formula holds: $$(fg)^{\nabla}(t)=f^{\nabla}(t)g(t)+f(\rho(t))g^{\nabla}(t)).$$
Proof: █
Theorem (Product rule,II): The following formula holds: $$(fg)^{\nabla}(t) = f(t)g^{\nabla}(t)+ f^{\nabla}(t)g(\rho(t)).$$
Proof: █
Theorem (Quotient rule): The following formula holds: $$\left( \dfrac{f}{g} \right)^{\nabla}(t) = \dfrac{f^{\nabla}(t)g(t)-f(t)g^{\nabla}(t)}{g(t)g(\rho(t))}.$$
Proof: █
Relationship between nabla derivative and delta derivative
Relationship between delta derivative and nabla derivative
See also
References
Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran