Difference between revisions of "Nabla derivative"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
Let $\mathbb{T}$ be a [[time scale]]. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by
 
Let $\mathbb{T}$ be a [[time scale]]. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by
 
$$\nu(t) = t - \rho(t).$$
 
$$\nu(t) = t - \rho(t).$$
Line 4: Line 5:
 
Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$,  
 
Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$,  
 
$$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$
 
$$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$
 +
 +
==Properties of the $\nabla$-derivative==
 +
[[Nabla differentiable implies continuous]]<br />
 +
[[Nabla derivative at left-scattered]]<br />
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> If $t$ is left-dense, then (if it exists),
 +
$$f^{\nabla}(t) = \lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> If $f$ is differentiable at $t$, then
 +
$$f(\rho(t))=f(t)+\nu(t)f^{\nabla}(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Sum rule):</strong>
 +
$$(f+g)^{\nabla}(t)=f^{\nabla}(t)+g^{\nabla}(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Constant rule):</strong> If $\alpha$ is constant with respect to $t$, then
 +
$$(\alpha f)^{\nabla}(t) = \alpha f^{\nabla}(t).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Product rule,I):</strong> The following formula holds:
 +
$$(fg)^{\nabla}(t)=f^{\nabla}(t)g(t)+f(\rho(t))g^{\nabla}(t)).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Product rule,II):</strong> The following formula holds:
 +
$$(fg)^{\nabla}(t) = f(t)g^{\nabla}(t)+ f^{\nabla}(t)g(\rho(t)).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem (Quotient rule):</strong> The following formula holds:
 +
$$\left( \dfrac{f}{g} \right)^{\nabla}(t) = \dfrac{f^{\nabla}(t)g(t)-f(t)g^{\nabla}(t)}{g(t)g(\rho(t))}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
[[Relationship between nabla derivative and delta derivative]]<br />
 +
[[Relationship between delta derivative and nabla derivative]]<br />
 +
 +
=See also=
 +
[[Delta derivative]]<br />
  
 
=References=
 
=References=
<a href="http://wwwp.cord.edu/faculty/andersod/p20.pdf">Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran</a>
+
[http://wwwp.cord.edu/faculty/andersod/p20.pdf Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran]
 +
 
 +
[[Category:Definition]]

Latest revision as of 01:01, 23 August 2016

Let $\mathbb{T}$ be a time scale. If $\mathbb{T}$ has a right-scattered minimum $m$, then define $\mathbb{T}_{\kappa}=\mathbb{T} \setminus \{m\}$, otherwise let $\mathbb{T}_{\kappa}=\mathbb{T}$. Define the backward graininess function $\nu \colon \mathbb{T}_{\kappa} \rightarrow \mathbb{R}$ by $$\nu(t) = t - \rho(t).$$

Let $f \colon \mathbb{T} \rightarrow \mathbb{R}$ and let $t \in \mathbb{T}_{\kappa}$. The $\nabla$-derivative of $f$ at $t$ is denoted by $f^{\nabla}(t)$ to be the number such that given any $\epsilon > 0$ there is a neighborhood $U$ of $t$ and $s \in U$, $$|f(\rho(t))-f(s)-f^{\nabla}(t)[\rho(t)-s]|\leq \epsilon|\rho(t)-s|.$$

Properties of the $\nabla$-derivative

Nabla differentiable implies continuous
Nabla derivative at left-scattered

Theorem: If $t$ is left-dense, then (if it exists), $$f^{\nabla}(t) = \lim_{s \rightarrow t}\dfrac{f(t)-f(s)}{t-s}.$$

Proof:

Theorem: If $f$ is differentiable at $t$, then $$f(\rho(t))=f(t)+\nu(t)f^{\nabla}(t).$$

Proof:

Theorem (Sum rule): $$(f+g)^{\nabla}(t)=f^{\nabla}(t)+g^{\nabla}(t).$$

Proof:

Theorem (Constant rule): If $\alpha$ is constant with respect to $t$, then $$(\alpha f)^{\nabla}(t) = \alpha f^{\nabla}(t).$$

Proof:

Theorem (Product rule,I): The following formula holds: $$(fg)^{\nabla}(t)=f^{\nabla}(t)g(t)+f(\rho(t))g^{\nabla}(t)).$$

Proof:

Theorem (Product rule,II): The following formula holds: $$(fg)^{\nabla}(t) = f(t)g^{\nabla}(t)+ f^{\nabla}(t)g(\rho(t)).$$

Proof:

Theorem (Quotient rule): The following formula holds: $$\left( \dfrac{f}{g} \right)^{\nabla}(t) = \dfrac{f^{\nabla}(t)g(t)-f(t)g^{\nabla}(t)}{g(t)g(\rho(t))}.$$

Proof:

Relationship between nabla derivative and delta derivative
Relationship between delta derivative and nabla derivative

See also

Delta derivative

References

Nabla dynamic equations on time scales - D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran