|
|
(17 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | There are a few equivalent definitions of $\Delta$-integration.
| + | __NOTOC__ |
| | | |
− | ==Cauchy $\Delta$-integral==
| + | Let $\mathbb{T}$ be a [[time scale]]. Delta integration is defined as the inverse operation of [[delta derivative|delta differentiation]] in the sense that if $F^{\Delta}(t)=f(t)$, then |
− | Let $\mathbb{T}$ be a [[time_scale | time scale]]. We say that $f$ is regulated if its right-sided limits exist (i.e. are finite) at all right-dense points of $\mathbb{T}$ and its left-sided limits exist (i.e. are finite) at all left-dense points of $\mathbb{T}$. We say that $f$ is pre-differentiable with region of differentiation $D$ if $D \subset \mathbb{T}^{\kappa}$, $\mathbb{T}^{\kappa} \setminus D$ is countable with no right-scattered elements of $\mathbb{T}$, and $f$ is $\Delta$-differentiable at each $t \in D$. | + | $$\displaystyle\int_s^t f(\tau) \Delta \tau = F(t)-F(s).$$ |
− | Now suppose that $f$ is regulated. It is known that there exists a function $F$ which is pre-differentiable with region of differentiation $D$ such that $F^{\Delta}(t)=f(t)$. We define the indefinite integral of a regulated function $f$ by
| |
− | $$\displaystyle\int f(t) \Delta t = F(t)+C$$ | |
− | for an arbitrary constant $C$.
| |
| | | |
− | Now we define the definite integral, i.e. the Cauchy integral, by the formula
| + | ==Properties of $\Delta$-integrals== |
− | $$\displaystyle\int_s^t f(\tau) \Delta \tau = F(t)-F(s)$$
| + | [[Delta integral from t to sigma(t)]]<br /> |
− | for all $s,t \in \mathbb{T}$. | + | [[Delta integral is linear]]<br /> |
| + | [[Interchanging limits of delta integral]]<br /> |
| + | [[Delta integrals are additive over intervals]]<br /> |
| + | [[Integration by parts for delta integrals with sigma in integrand]]<br /> |
| + | [[Integration by parts for delta integrals with no sigma in integrand]]<br /> |
| + | [[Delta integral over degenerate interval]]<br /> |
| + | [[Modulus of delta integral]]<br /> |
| + | [[Delta integral of nonnegative function]]<br /> |
| + | [[Delta integral of delta derivative]]<br /> |
| + | [[Delta derivative of the delta integral]]<br /> |
| | | |
− | A function $F \colon \mathbb{T}\rightarrow \mathbb{R}$ is called an antiderivative of $f \colon \mathbb{T}\rightarrow \mathbb{R}$ if $F^{\Delta}(t)=f(t)$ for all $t \in \mathbb{T}^{\kappa}$. It is known that all rd-continuous functions possess an antiderivative, in particular if $t_0 \in \mathbb{T}$ then $F$ defined by
| + | ==References== |
− | $$F(t) = \displaystyle\int_{t_0}^t f(\tau) \Delta \tau$$
| |
− | is an antiderivative of $f$.
| |
| | | |
− | ==Riemann $\Delta$-integral==
| + | [[Category:Definition]] |
− | | |
− | ==Lebesgue $\Delta$-integral==
| |
− | | |
− | ==Related definitions==
| |
− | If $a \in \mathbb{T}$, $\sup \mathbb{T}=\infty$, and $f$ is rd-continuous on $[a, \infty) \cap \mathbb{T}$ then we define the improper integral by
| |
− | $$\displaystyle\int_a^{\infty} f(t) \Delta t = \displaystyle\lim_{b \rightarrow \infty} \displaystyle\int_a^b f(t) \Delta t$$
| |
− | | |
− | ==Properties of $\Delta$-integrals==
| |
− | *$\displaystyle\int_t^{\sigma(t)} f(\tau) \Delta \tau = \mu(t)f(t)$
| |
− | *$\displaystyle\int_a^b [f(t)+g(t)]\Delta t = \displaystyle\int_a^b f(t) \Delta t + \displaystyle\int_a^b g(t) \Delta t$
| |
− | *If $\alpha$ is constant with respect to $t$, then
| |
− | $$\displaystyle\int_a^b (\alpha f)(t) \Delta t=\alpha \displaystyle\int_a^b f(t) \Delta t$$
| |
− | *$\displaystyle\int_a^b f(t) \Delta t = -\displaystyle\int_b^a f(t) \Delta t$
| |
− | *$\displaystyle\int_a^b f(t) \Delta t = \displaystyle\int_a^c f(t) \Delta t + \displaystyle\int_c^b f(t) \Delta t$
| |
− | *$\displaystyle\int_a^b f(\sigma(t))g^{\Delta}(t) \Delta t = (fg)(b) - (fg)(a) - \displaystyle\int_a^b f^{\Delta}(t)g(t) \Delta t$
| |
− | *$\displaystyle\int_a^b f(t) g^{\Delta}(t) \Delta t = (fg)(b) - (fg)(a) - \displaystyle\int_a^b f^{\Delta}(t) g(\sigma(t)) \Delta t$
| |
− | *$\displaystyle\int_a^a f(t) \Delta t = 0$
| |
− | *if $|f(t)| \leq g(t)$ on $[a,b)$ then
| |
− | $$\left| \displaystyle\int_a^b f(t) \Delta t \right| \leq \displaystyle\int_a^b g(t) \Delta t$$
| |
− | *if $f(t) \geq 0$ for all $a \leq t < b$ then $\displaystyle\int_a^b f(t) \Delta t \geq 0$
| |