Difference between revisions of "Riccati equation"

From timescalewiki
Jump to: navigation, search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]]. The Riccati equation is the nonlinear [[dynamic equation]] defined by
+
Let $\mathbb{T}$ be a [[time scale]]. The [[self-adjoint]] equation is $(py^{\Delta})^{\Delta}+qy^{\sigma}=0$. The Riccati equation is the nonlinear [[dynamic equation]] defined by
 
$$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$
 
$$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$
 
where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.
 
where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.
 +
 +
=Properties=
 +
 +
=References=
 +
[http://web.mst.edu/~bohner/papers/deotsas.pdf]

Latest revision as of 06:23, 10 June 2016

Let $\mathbb{T}$ be a time scale. The self-adjoint equation is $(py^{\Delta})^{\Delta}+qy^{\sigma}=0$. The Riccati equation is the nonlinear dynamic equation defined by $$z^{\Delta}(t) + q(t) + \dfrac{z^2(t)}{p(t)+\mu(t)z(t)}=0,$$ where $p(t)+\mu(t)z(t)>0$ for all $t \in \mathbb{T}^{\kappa}$.

Properties

References

[1]