Difference between revisions of "Delta derivative of sum"

From timescalewiki
Jump to: navigation, search
 
Line 5: Line 5:
  
 
==References==
 
==References==
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta simple useful formula|next=Delta derivative of constant multiple}}: Theorem 1.20 (ii)
+
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta simple useful formula|next=Delta derivative of constant multiple}}: Theorem 1.20 (i)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 06:09, 10 June 2016

Theorem

Let $\mathbb{T}$ be a time scale and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be delta differentiable at $t$. Then the function $f+g \colon \mathbb{T} \rightarrow \mathbb{R}$ is delta differentiable with $$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t).$$

Proof

References