Difference between revisions of "Delta derivative of reciprocal of classical polynomial"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale, let $\alpha$ a constant, let $m \in \mathbb{N}$, and define $g\colon \mathbb{T} \rightarrow \mathbb{R}$ by $g(t)=\dfrac{1}{(t...")
 
Line 7: Line 7:
 
==References==
 
==References==
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative of classical polynomial|next=findme}}: Theorem 1.24(ii)
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta derivative of classical polynomial|next=findme}}: Theorem 1.24(ii)
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 06:03, 10 June 2016

Theorem

Let $\mathbb{T}$ be a time scale, let $\alpha$ a constant, let $m \in \mathbb{N}$, and define $g\colon \mathbb{T} \rightarrow \mathbb{R}$ by $g(t)=\dfrac{1}{(t-\alpha)^m}$. Then $$g^{\Delta}(t)=-\displaystyle\sum_{j=0}^{m-1} \dfrac{1}{(\sigma(t)-\alpha)^{m-j}(t-\alpha)^{j+1}},$$ where $\sigma$ denotes the forward jump.

Proof

References