Difference between revisions of "Delta derivative of sum"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be delta differentiable at $t$. Then the function ...")
 
Line 6: Line 6:
 
==References==
 
==References==
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta simple useful formula|next=Delta derivative of constant multiple}}: Theorem 1.20 (ii)
 
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|prev=Delta simple useful formula|next=Delta derivative of constant multiple}}: Theorem 1.20 (ii)
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 05:45, 10 June 2016

Theorem

Let $\mathbb{T}$ be a time scale and let $f,g \colon \mathbb{T} \rightarrow \mathbb{R}$ be delta differentiable at $t$. Then the function $f+g \colon \mathbb{T} \rightarrow \mathbb{R}$ is delta differentiable with $$(f+g)^{\Delta}(t)=f^{\Delta}(t)+g^{\Delta}(t).$$

Proof

References