Difference between revisions of "Forward jump"
From timescalewiki
Line 1: | Line 1: | ||
Let $\mathbb{T}$ be a [[time scale]]. The forward jump operator $\sigma \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula | Let $\mathbb{T}$ be a [[time scale]]. The forward jump operator $\sigma \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula | ||
$$\sigma(t)=\inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$ | $$\sigma(t)=\inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$ | ||
+ | |||
+ | =Properties= | ||
+ | |||
+ | =References= | ||
+ | * {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|next=Induction on time scales}}: Definition 1.1 |
Revision as of 03:23, 10 June 2016
Let $\mathbb{T}$ be a time scale. The forward jump operator $\sigma \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\sigma(t)=\inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$
Properties
References
- Martin Bohner and Allan Peterson: Dynamic Equations on Time Scales (2001)... (next): Definition 1.1