Difference between revisions of "Forward jump"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $\mathbb{T}$ be a [[time scale]]. The forward jump operator $\sigma \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula  
 
Let $\mathbb{T}$ be a [[time scale]]. The forward jump operator $\sigma \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula  
 
$$\sigma(t)=\inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$
 
$$\sigma(t)=\inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$
 +
 +
=Properties=
 +
 +
=References=
 +
* {{BookReference|Dynamic Equations on Time Scales|2001|Martin Bohner|author2=Allan Peterson|next=Induction on time scales}}: Definition 1.1

Revision as of 03:23, 10 June 2016

Let $\mathbb{T}$ be a time scale. The forward jump operator $\sigma \colon \mathbb{T}^{\kappa} \rightarrow \mathbb{T}$ is defined by the formula $$\sigma(t)=\inf \left\{ x \in \mathbb{T} \colon x > t \right\}.$$

Properties

References