Difference between revisions of "Relationship between delta exponential and nabla exponential"
From timescalewiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $p \in ...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | If $q$ is [[continuous]] and [[mu regressive | $\mu$-regressive]] then | |
− | + | $$e_q(t,s)=\hat{e}_{\frac{q^{\rho}}{1+q^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-q^{\rho})}(t,s),$$ | |
− | + | where $e_q$ denotes the [[Delta exponential|$\Delta$-exponential]] and $\hat{e}_q$ denotes the [[nabla exponential|$\nabla$-exponential]]. | |
− | + | ||
− | + | ==Proof== | |
− | + | ||
+ | ==References== | ||
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Latest revision as of 22:22, 9 June 2016
Theorem
If $q$ is continuous and $\mu$-regressive then $$e_q(t,s)=\hat{e}_{\frac{q^{\rho}}{1+q^{\rho}\nu}}(t,s)=\hat{e}_{\ominus_{\nu}(-q^{\rho})}(t,s),$$ where $e_q$ denotes the $\Delta$-exponential and $\hat{e}_q$ denotes the $\nabla$-exponential.