Difference between revisions of "Delta exponential with t=s"

From timescalewiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> Let $\mathbb{T}$ be a time scale, $t \in ...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Delta exponential with t=s|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], $t \in \mathbb{T}$, and $p \colon \mathbb{T} \rightarrow \mathbb{C}$ a [[regressive function]]. The following formula holds:
+
<strong>[[Delta exponential with t=s|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], let $t \in \mathbb{T}$, and $p \colon \mathbb{T} \rightarrow \mathbb{C}$ a [[regressive function]]. The following formula holds:
 
$$e_p(t,t;\mathbb{T})=1,$$
 
$$e_p(t,t;\mathbb{T})=1,$$
 
where $e_p$ denotes the [[delta exponential]].
 
where $e_p$ denotes the [[delta exponential]].

Revision as of 23:13, 31 May 2016

Theorem: Let $\mathbb{T}$ be a time scale, let $t \in \mathbb{T}$, and $p \colon \mathbb{T} \rightarrow \mathbb{C}$ a regressive function. The following formula holds: $$e_p(t,t;\mathbb{T})=1,$$ where $e_p$ denotes the delta exponential.

Proof: