Difference between revisions of "Square integers"

From timescalewiki
Jump to: navigation, search
(Created page with "The set $\mathbb{Z}^2 = \{0,1,4,9,16,\ldots\}$ of square integers is a time scale. {| class="wikitable" |+$\mathbb{T}=\mathbb{Z}^2$ |- |Generic element $t\in \mathbb{T}$:...")
 
Line 33: Line 33:
 
\end{array}$
 
\end{array}$
 
|}
 
|}
 +
 +
<center>{{:Time scales footer}}</center>

Revision as of 01:22, 22 May 2015

The set $\mathbb{Z}^2 = \{0,1,4,9,16,\ldots\}$ of square integers is a time scale.

$\mathbb{T}=\mathbb{Z}^2$
Generic element $t\in \mathbb{T}$: For some $n \in \mathbb{Z}, t=n^2$
Jump operator: $\begin{array}{ll} \sigma(t) &= (\sqrt{t}+1)^2 \\ &= t + 2\sqrt{t} + 1 \end{array}$
Graininess operator: $\begin{array}{ll} \mu(t) &= (t+2\sqrt{t}+1)-t \\ &= 2\sqrt{t}+1 \end{array}$
$\Delta$-derivative: $f^{\Delta}(t)=\dfrac{f(t+2\sqrt{t}+1)-f(t)}{2\sqrt{t}-1}$
$\Delta$-integral: $\displaystyle\int_s^t f(t) \Delta t = \displaystyle\sum_{k=\sqrt{s}}^{\sqrt{t}-1} (2k+1)f(k^2)$
Exponential function: $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_s^t \dfrac{1}{\mu(\tau)} \log(1 + p(\tau) \mu(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\sqrt{s}}^{\sqrt{t}-1} \mu(k^2) \dfrac{1}{\mu(k^2)} \log ( 1 + p(k^2)\mu(k^2)) \right) \\ &= \exp \left( \displaystyle\sum_{k=\sqrt{s}}^{\sqrt{t}-1} \log ( 1 + p(k^2)\mu(k^2)) \right) \\ &= \displaystyle\prod_{k=\sqrt{s}}^{\sqrt{t}-1} 1 + p(k^2)(2k+1) \end{array}$

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set