Difference between revisions of "Reciprocal of delta exponential"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Reciprocal of delta exponential|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be a [[regressive function]]. The following formula holds:
 
<strong>[[Reciprocal of delta exponential|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be a [[regressive function]]. The following formula holds:
$$\dfrac{1}{e_p(t,s)}=e_{\ominus p}(s,t),$$
+
$$\dfrac{1}{e_p(t,s;\mathbb{T})}=e_{\ominus p}(s,t;\mathbb{T}),$$
 
where $e_p$ denotes the [[delta exponential]] and $\ominus$ denotes [[circle minus]].
 
where $e_p$ denotes the [[delta exponential]] and $\ominus$ denotes [[circle minus]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 23:19, 31 May 2016

Theorem: Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $p \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be a regressive function. The following formula holds: $$\dfrac{1}{e_p(t,s;\mathbb{T})}=e_{\ominus p}(s,t;\mathbb{T}),$$ where $e_p$ denotes the delta exponential and $\ominus$ denotes circle minus.

Proof: