Real numbers

From timescalewiki
Revision as of 19:38, 29 April 2015 by Tom (talk | contribs)
Jump to: navigation, search

The set $\mathbb{R}$ of real numbers is a time scale. In this time scale, all derivatives reduce to the clasical derivative and the integrals reduce to the Riemann integral.

$\mathbb{T}=\mathbb{R}$
Forward jump: $\sigma(t)=t$
Forward graininess: $\mu(t)=0$
Backward jump: $\rho(t)=t$
Backward graininess: $\nu(t)=0$
$\Delta$-derivative $f^{\Delta}(t)=\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$
$\nabla$-derivative $f^{\nabla}(t) =\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$
$\Delta$-integral $\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$
$\nabla$-derivative $\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$
$e_p(t,s)=$ $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\hat{e}_p(t,s)=$ $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\mathrm{sin}_p(t,s)=$ $\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\mathrm{\sin}_1(t,0)$ $\sin(t)$

(derivation)

$\mathrm{\cos}_p(t,s)$ $\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$

(derivation)

$\mathrm{\cos}_1(t,0)$ $\cos(t)$

(derivation)

Hilger circle
Laplace transform $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$
Gamma function $\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$