Quantum q greater than 1

From timescalewiki
Revision as of 22:53, 4 May 2015 by Tom (talk | contribs)
Jump to: navigation, search

Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a time scale.

$\mathbb{T}=\overline{q^{\mathbb{Z}}}, q>1$
Generic element $t\in \mathbb{T}$: For some $n \in \mathbb{Z}, t =q^n$
Jump operator: $\sigma(t)=qt$
Graininess operator: $\begin{array}{ll} \mu(t)&=qt-t\\ &=t(q-1) \end{array}$
$\Delta$-derivative: $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$
$\Delta$-integral: $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ \end{array}$
$h_k(t,s)$ $\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$
Exponential function: $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log( 1 + p(\tau) \mu(\tau) ) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \mu(q^k) \dfrac{1}{\mu(q^k)} \log(1 + p(q^k)\mu(q^k)) \right) \\ &= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \log(1 + p(q^k)\mu(q^k)) \right) \\ &= \displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1) \end{array}$