Difference between revisions of "Product of delta exponentials with fixed t and s"

From timescalewiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Product of delta exponentials with fixed t and s|Theorem]]:</strong> Let $\mathbb{T}$ be a [[time scale]], $t,s \in \mathbb{T}$, and let $p,q \in \mathcal{R}\left(\mathbb{T},\mathbb{C}\right)$ be [[regressive function|regressive functions]]. The following formula holds:
+
Let $\mathbb{T}$ be a [[time scale]], $t,s \in \mathbb{T}$, and let $p,q \in \mathcal{R}\left(\mathbb{T},\mathbb{C}\right)$ be [[regressive function|regressive functions]]. The following formula holds:
 
$$e_p(t,s;\mathbb{T})e_q(t,s;\mathbb{T})=e_{p \oplus q}(t,s;\mathbb{T}),$$
 
$$e_p(t,s;\mathbb{T})e_q(t,s;\mathbb{T})=e_{p \oplus q}(t,s;\mathbb{T}),$$
 
where $e_p$ denotes the [[delta exponential]] and $\oplus$ denotes [[circle plus]].
 
where $e_p$ denotes the [[delta exponential]] and $\oplus$ denotes [[circle plus]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 22:21, 9 June 2016

Theorem

Let $\mathbb{T}$ be a time scale, $t,s \in \mathbb{T}$, and let $p,q \in \mathcal{R}\left(\mathbb{T},\mathbb{C}\right)$ be regressive functions. The following formula holds: $$e_p(t,s;\mathbb{T})e_q(t,s;\mathbb{T})=e_{p \oplus q}(t,s;\mathbb{T}),$$ where $e_p$ denotes the delta exponential and $\oplus$ denotes circle plus.

Proof

References