Nth root of nonnegative integers

From timescalewiki
Revision as of 22:18, 23 February 2016 by Tom (talk | contribs)
Jump to: navigation, search

Let $n \in \{1,2,\ldots\}$. The set $\sqrt[n]{\mathbb{N}_0}=\{0,1,\sqrt[n]{2}, \sqrt[n]{3},\ldots\}$ is a time scale.

$\mathbb{T}=\sqrt[n]{\mathbb{N}}$
Forward jump: $\sigma(t)=\sqrt[n]{t^n+1}$ derivation
Forward graininess: $\mu(t)=\sqrt[n]{t^n+1}-t$ derivation
Backward jump: $\rho(t)=\sqrt[n]{t^n-1}$ derivation
Backward graininess: $\nu(t)=$ derivation
$\Delta$-derivative $f^{\Delta}(t)=$ derivation
$\nabla$-derivative $f^{\nabla}(t)=$ derivation
$\Delta$-integral $\displaystyle\int_s^t f(\tau) \Delta \tau=$ derivation
$\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation
$h_k(t,s)$ $h_k(t,s)=$ derivation
$\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation
$g_k(t,s)$ $g_k(t,s)=$ derivation
$\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation
$e_p(t,s)$ $e_p(t,s)=$ derivation
$\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation
Gaussian bell $\mathbf{E}(t)=$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation
$\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation
$\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation
$\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation
$\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation
$\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation
$\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation
$\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation
$\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation
Gamma function $\Gamma_{\sqrt[n]{\mathbb{N}}}(x,s)=$ derivation
Euler-Cauchy logarithm $L(t,s)=$ derivation
Bohner logarithm $L_p(t,s)=$ derivation
Jackson logarithm $\log_{\sqrt[n]{\mathbb{N}}} g(t)=$ derivation
Mozyrska-Torres logarithm $L_{\sqrt[n]{\mathbb{N}}}(t)=$ derivation
Laplace transform $\mathscr{L}_{\sqrt[n]{\mathbb{N}}}\{f\}(z;s)=$ derivation
Hilger circle derivation