Difference between revisions of "Nth root of nonnegative integers"

From timescalewiki
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
{| class="wikitable"
 
{| class="wikitable"
|+$\mathbb{T}=\sqrt[n]{\mathbb{N}}$
+
|+$\mathbb{T}=\sqrt[n]{\mathbb{N}_0}$
 
|-
 
|-
 
|[[Forward jump]]:
 
|[[Forward jump]]:
Line 21: Line 21:
 
|-
 
|-
 
|[[Delta derivative | $\Delta$-derivative]]
 
|[[Delta derivative | $\Delta$-derivative]]
|$f^{\Delta}(t)=$
+
|$f^{\Delta}(t)=\dfrac{f(\sqrt[n]{t^n+1})-f(t)}{\sqrt[n]{t^n+1}-t}$
 
|[[Derivation of delta derivative for T=nth root of nonnegative integers|derivation]]
 
|[[Derivation of delta derivative for T=nth root of nonnegative integers|derivation]]
 
|-
 
|-
 
|[[Nabla derivative | $\nabla$-derivative]]
 
|[[Nabla derivative | $\nabla$-derivative]]
|$f^{\nabla}(t)=$
+
|$f^{\nabla}(t)=\dfrac{f(t)-f(\sqrt[n]{t^n-1})}{t-\sqrt{t^n-1}}$
 
|[[Derivation of nabla derivative for T=nth root of nonnegative integers|derivation]]
 
|[[Derivation of nabla derivative for T=nth root of nonnegative integers|derivation]]
 
|-
 
|-
 
|[[Delta integral | $\Delta$-integral]]
 
|[[Delta integral | $\Delta$-integral]]
|$\displaystyle\int_s^t f(\tau) \Delta \tau=$
+
|$\displaystyle\int_s^t f(\tau) \Delta \tau=\displaystyle\sum_{k=s^n}^{t^n-1} (\sqrt[n]{k+1}-\sqrt[n]{k}) f(\sqrt[n]{k})$
 
|[[Derivation of delta integral for T=nth root of nonnegative integers|derivation]]
 
|[[Derivation of delta integral for T=nth root of nonnegative integers|derivation]]
 
|-
 
|-
Line 133: Line 133:
 
|-
 
|-
 
|}
 
|}
 +
 +
<center>{{:Time scales footer}}</center>

Latest revision as of 00:56, 11 December 2016

Let $n \in \{1,2,\ldots\}$. The set $\sqrt[n]{\mathbb{N}_0}=\{0,1,\sqrt[n]{2}, \sqrt[n]{3},\ldots\}$ is a time scale.

$\mathbb{T}=\sqrt[n]{\mathbb{N}_0}$
Forward jump: $\sigma(t)=\sqrt[n]{t^n+1}$ derivation
Forward graininess: $\mu(t)=\sqrt[n]{t^n+1}-t$ derivation
Backward jump: $\rho(t)=\sqrt[n]{t^n-1}$ derivation
Backward graininess: $\nu(t)=t-\sqrt[n]{t^n-1}$ derivation
$\Delta$-derivative $f^{\Delta}(t)=\dfrac{f(\sqrt[n]{t^n+1})-f(t)}{\sqrt[n]{t^n+1}-t}$ derivation
$\nabla$-derivative $f^{\nabla}(t)=\dfrac{f(t)-f(\sqrt[n]{t^n-1})}{t-\sqrt{t^n-1}}$ derivation
$\Delta$-integral $\displaystyle\int_s^t f(\tau) \Delta \tau=\displaystyle\sum_{k=s^n}^{t^n-1} (\sqrt[n]{k+1}-\sqrt[n]{k}) f(\sqrt[n]{k})$ derivation
$\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation
$h_k(t,s)$ $h_k(t,s)=$ derivation
$\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation
$g_k(t,s)$ $g_k(t,s)=$ derivation
$\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation
$e_p(t,s)$ $e_p(t,s)=$ derivation
$\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation
Gaussian bell $\mathbf{E}(t)=$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation
$\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation
$\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation
$\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation
$\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation
$\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation
$\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation
$\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation
$\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation
Gamma function $\Gamma_{\sqrt[n]{\mathbb{N}}}(x,s)=$ derivation
Euler-Cauchy logarithm $L(t,s)=$ derivation
Bohner logarithm $L_p(t,s)=$ derivation
Jackson logarithm $\log_{\sqrt[n]{\mathbb{N}}} g(t)=$ derivation
Mozyrska-Torres logarithm $L_{\sqrt[n]{\mathbb{N}}}(t)=$ derivation
Laplace transform $\mathscr{L}_{\sqrt[n]{\mathbb{N}}}\{f\}(z;s)=$ derivation
Hilger circle derivation

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set