Difference between revisions of "Nabla cosh"

From timescalewiki
Jump to: navigation, search
Line 2: Line 2:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Second order dynamic equation for nabla cosh]]
<strong>Theorem:</strong> If $\alpha > 0$ with $\alpha^2\nu \in \mathcal{\nu}$, a [[regressive function]], then $\widehat{\cosh}_{\gamma}(\cdot,s)$ and $\widehat{\sinh}_{\gamma}(\cdot,s)$ solve the $\nabla$ dynamic equation
 
$$y^{\nabla \nabla}-\gamma^2 y=0.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
  
 
#$\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function.
 
#$\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the [[Nabla sinh|$\nabla$-$\sinh$]] function.

Revision as of 23:35, 11 December 2016

$$\widehat{\cosh}_p(t,s)=\dfrac{\widehat{e}_p(t,s)+\widehat{e}_{-p}(t,s)}{2}$$

Properties

Second order dynamic equation for nabla cosh

  1. $\widehat{\cosh}_p^{\nabla}(t,s)=p(t)\widehat{\sinh}_p(t,s)$, where $\widehat{\sinh}$ is the $\nabla$-$\sinh$ function.
  2. $\widehat{\cosh}^2_p(t,s)-\widehat{\sinh}^2_p(t,s)=\widehat{e}_{\nu p^2}(t,s)$
  3. $\widehat{\cosh}_p(t,s) + \widehat{\sinh}_p(t,s)=\hat{e}_p(t,s)$
  4. $\widehat{\cosh}_p(t,s)-\widehat{\sinh}_p(t,s)=\widehat{e}_{-p}(t,s)$

References

Nabla dynamic equations

$\nabla$-special functions on time scales

$\nabla$-$\widehat{\cos}_p$$\nabla$-$\widehat{\cosh}_p$$\nabla$-$\widehat{e}_p$$\nabla$-$h_k$$\nabla$-$g_k$$\nabla$-$\widehat{\sin}_p$$\nabla$-$\widehat{\sinh}_p$