Difference between revisions of "Mozyrska-Torres logarithm is positive on (1,infinity)"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$. ==Proof== ==References== {{PaperReference|The Natural Log...")
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$.  
+
Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm.
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
{{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyraska-Torres logarithm is negative on (0,1)|next=Mozyrska-Torres logarithm composed with forward jump}}
+
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyraska-Torres logarithm is negative on (0,1)|next=Mozyrska-Torres logarithm composed with forward jump}}

Revision as of 15:27, 21 October 2017

Theorem

Let $\mathbb{T}$ be a time scale. If $t \in (1,\infty) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) > 0$, where $L_{\mathbb{R}}$ denotes the Mozyrska-Torres logarithm.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)