# Difference between revisions of "Mozyrska-Torres logarithm is increasing"

From timescalewiki

(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. For all $t \in \mathbb{T}^{\kappa} \cap (0,\infty)$, $t \mapsto L_{\mathbb{T}}(t)$ is an increasing function. ==Proof==...") |
|||

Line 5: | Line 5: | ||

==References== | ==References== | ||

− | {{PaperReference|The Natural Logarithm on Time Scales| | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm on the reals|next=Mozyraska-Torres logarithm is negative on (0,1)}} |

## Latest revision as of 15:28, 21 October 2017

## Theorem

Let $\mathbb{T}$ be a time scale. For all $t \in \mathbb{T}^{\kappa} \cap (0,\infty)$, $t \mapsto L_{\mathbb{T}}(t)$ is an increasing function.

## Proof

## References

Dorota Mozyrska and Delfim F. M. Torres: *The Natural Logarithm on Time Scales* (2008)... (previous)... (next)