Difference between revisions of "Mozyrska-Torres logarithm is increasing"

From timescalewiki
Jump to: navigation, search
(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. For all $t \in \mathbb{T}^{\kappa} \cap (0,\infty)$, $t \mapsto L_{\mathbb{T}}(t)$ is an increasing function. ==Proof==...")
 
 
Line 5: Line 5:
  
 
==References==
 
==References==
{{PaperReference|The Natural Logarithm on Time Scales|2009|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm on the reals|next=Mozyraska-Torres logarithm is negative on (0,1)}}
+
{{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm on the reals|next=Mozyraska-Torres logarithm is negative on (0,1)}}

Latest revision as of 15:28, 21 October 2017

Theorem

Let $\mathbb{T}$ be a time scale. For all $t \in \mathbb{T}^{\kappa} \cap (0,\infty)$, $t \mapsto L_{\mathbb{T}}(t)$ is an increasing function.

Proof

References

Dorota Mozyrska and Delfim F. M. Torres: The Natural Logarithm on Time Scales (2008)... (previous)... (next)