# Difference between revisions of "Mozyrska-Torres logarithm composed with forward jump"

From timescalewiki

(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. Then, $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-To...") |
|||

Line 7: | Line 7: | ||

==References== | ==References== | ||

− | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev= | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is positive on (1,infinity)|next=Euler-Cauchy logarithm}} |

## Latest revision as of 15:31, 21 October 2017

## Theorem

Let $\mathbb{T}$ be a time scale. Then, $$L_{\mathbb{T}}(\sigma(t)) = L_{\mathbb{T}}(t) + \dfrac{\mu(t)}{t},$$ where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm, $\sigma$ denotes the forward jump, and $\mu$ denotes the forward graininess.

## Proof

## References

Dorota Mozyrska and Delfim F. M. Torres: *The Natural Logarithm on Time Scales* (2008)... (previous)... (next)