# Difference between revisions of "Mozyraska-Torres logarithm is negative on (0,1)"

From timescalewiki

Line 5: | Line 5: | ||

==References== | ==References== | ||

− | {{PaperReference|The Natural Logarithm on Time Scales| | + | {{PaperReference|The Natural Logarithm on Time Scales|2008|Dorota Mozyrska|author2 = Delfim F. M. Torres|prev=Mozyrska-Torres logarithm is increasing|next=Mozyrska-Torres logarithm is positive on (1,infinity)}} |

## Latest revision as of 15:27, 21 October 2017

## Theorem

Let $\mathbb{T}$ be a time scale. If $t \in (0,1) \cap \mathbb{T}$, then $L_{\mathbb{T}}(t) < 0$, where $L_{\mathbb{T}}$ denotes the Mozyrska-Torres logarithm.

## Proof

## References

Dorota Mozyrska and Delfim F. M. Torres: *The Natural Logarithm on Time Scales* (2008)... (previous)... (next)