# Difference between revisions of "Jackson logarithm of a product"

From timescalewiki

(Created page with "==Theorem== Let $\mathbb{T}$ be a time scale. The following formula holds: $$\log_{\mathbb{T}}(f(t)g(t))=\log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t),$$ where $\lo...") |
|||

Line 7: | Line 7: | ||

==References== | ==References== | ||

+ | *{{PaperReference|The time scale logarithm|2008|Billy Jackson|prev=Delta exponential of Jackson logarithm|next=findme}}: Theorem $1.2$, $(1.4)$ | ||

[[Category:Theorem]] | [[Category:Theorem]] | ||

[[Category:Unproven]] | [[Category:Unproven]] |

## Latest revision as of 17:47, 11 February 2017

## Theorem

Let $\mathbb{T}$ be a time scale. The following formula holds: $$\log_{\mathbb{T}}(f(t)g(t))=\log_{\mathbb{T}} f(t) \oplus \log_{\mathbb{T}} g(t),$$ where $\log_{\mathbb{T}}$ denotes the Jackson logarithm and $\oplus$ denotes forward circle plus.

## Proof

## References

- Billy Jackson:
*The time scale logarithm*(2008)... (previous)... (next): Theorem $1.2$, $(1.4)$