Difference between revisions of "Integers"

From timescalewiki
Jump to: navigation, search
(Created page with "The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a time scale. {| class="wikitable" |+$\mathbb{T}=h\mathbb{Z}$ |- |Generic element $t...")
 
Line 1: Line 1:
The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a [[time scale]].
+
The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ of integers is a [[time scale]].
  
 
{| class="wikitable"
 
{| class="wikitable"

Revision as of 19:45, 19 May 2014

The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ of integers is a time scale.

$\mathbb{T}=h\mathbb{Z}$
Generic element $t\in \mathbb{T}$: For some $n \in \mathbb{Z}, t =n$
Jump operator: $\sigma(t)=t+1$
Graininess operator: $\mu(t)=1$
$\Delta$-derivative: $f^{\Delta}(t)=f(t+1)-f(t)$
$\Delta$-integral: $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\sum_{k=s}^{t-1} f(k)$
Exponential function: $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + p(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=s}^{t-1} \log(1+p(k)) \right) \\ &= \displaystyle\prod_{k=s}^{t-1} \left( 1+p(k) \right) \\ \end{array}$