# Difference between revisions of "Hilger real axis"

From timescalewiki

(Created page with "Let $h>0$. We define the Hilger real axis by $$\mathbb{R}_h = \left\{ z \in \mathbb{C}_h \colon z \in \mathbb{R}, z > -\dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ is the H...") |
|||

Line 2: | Line 2: | ||

$$\mathbb{R}_h = \left\{ z \in \mathbb{C}_h \colon z \in \mathbb{R}, z > -\dfrac{1}{h} \right\},$$ | $$\mathbb{R}_h = \left\{ z \in \mathbb{C}_h \colon z \in \mathbb{R}, z > -\dfrac{1}{h} \right\},$$ | ||

where $\mathbb{C}_h$ is the [[Hilger complex plane]]. | where $\mathbb{C}_h$ is the [[Hilger complex plane]]. | ||

+ | |||

+ | =Properties= | ||

+ | |||

+ | =References= | ||

+ | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Hilger complex plane|next=Hilger alternating axis}}: Definition $2.2$ |

## Revision as of 00:37, 30 May 2017

Let $h>0$. We define the Hilger real axis by $$\mathbb{R}_h = \left\{ z \in \mathbb{C}_h \colon z \in \mathbb{R}, z > -\dfrac{1}{h} \right\},$$ where $\mathbb{C}_h$ is the Hilger complex plane.

# Properties

# References

- Robert J. Marks II, Ian A. Gravagne and John M. Davis:
*A generalized Fourier transform and convolution on time scales*(2008)... (previous)... (next): Definition $2.2$